数学演習第二 (演習第9回)

微積:偏微分[3](陰関数・ラグランジュの未定乗数法) 2015年 12月 16日

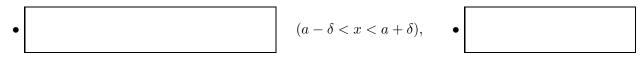


- 陰関数定理 (微積教科書 p.100) 🕳

 C^1 級の2変数関数 f(x,y) が、ある点 (a,b) で

f(a,b)=0 かつ $f_y(a,b) \neq 0$ をみたすとする .

このとき、次をみたす C^1 級の関数 $y=\varphi(x)$ が x=a を含むある区間 $a-\delta < x < a+\delta$ で存在する:



この $y=\varphi(x)$ を点 (a,b) の近くで f(x,y)=0 により定義される陰関数という.このとき $\varphi(x)$ の導関数 は次のように表される.

$$\varphi'(x) = \boxed{ (a - \delta < x < a + \delta)}$$

- 次の 2 変数関数 f(x,y) に対して,f(x,y)=0 で定まる陰関数 $y=\varphi(x)$ について y' および y'' をそれぞれ x と y の式で表せ.また,曲線 f(x,y)=0 上の指定された点における接線の方程式を求めよ.さらに,陰関数 $y=\varphi(x)$ の極値があれば求めよ.

 - (2) $f(x,y) = \log \sqrt{x^2 + y^2} \operatorname{Tan}^{-1} \frac{y}{x}$ $(x \neq 0)$ 点 (1,0) (問題 5.2.7 (4))
- $oxed{2}$ 2変数関数 $f(x,y)=-x+\int_0^y rac{dt}{\sqrt{(1-t^2)(1-k^2t^2)}}\;(-1< y< 1)$ を考える.ただし, $0\le k< 1$ は定数で,

-1 < y < 0 のとき $\int_0^y = -\int_y^0$ である.このとき,f(x,y) = 0 で定まる陰関数 $y = \varphi(x)$ について次に答えよ.

- (1) arphi'(x) を arphi(x) を用いて表し,曲線 f(x,y)=0 の原点における接線の方程式を求めよ.
- (2) $\varphi(x)$ を x^3 の項までマクローリン展開して , $\varphi(x)=a_0+a_1x+a_2x^2+a_3x^3+o(x^3)$ の形で表せ .
- $igl| egin{aligned} igl| igl| & C^1 & & \text{Moleon 2 goods} \ & g(x,y) \ & g(x,y) \ & \text{Moleon 2 goods} \ & g(x,y) \ & \text{Moleon 2 goods} \ & \text{Moleon$
 - ullet g(x,y)=0 の条件の下で、f(x,y) は点 (a,b) で極値 f(a,b)=c をとる. ullet $g_y(a,b)
 eq 0$
 - (1) (a,b) の近くで g(x,y)=0 の陰関数 $y=\varphi(x)$ が一意的に存在することを示し , $\varphi'(x)$ を g の偏導関数と $\varphi(x)$ を用いて表せ .
 - (2) (1) の陰関数 $y=\varphi(x)$ を用いて,1 変数関数 $h(x)=f(x,\varphi(x))$ を考える.このとき導関数 h'(x) を $\varphi'(x)$ を含まない形で表せ.さらに, $f_x(a,b)g_y(a,b)-f_y(a,b)g_x(a,b)=0$ を示せ.
 - (3) $F(x,y,\lambda)=f(x,y)-\lambda g(x,y)$ とするとき, $F_x(a,b,\lambda^*)=F_y(a,b,\lambda^*)=F_\lambda(a,b,\lambda^*)=0$ をみたす実数 λ^* が存在することを示せ(この λ^* はラグランジュ乗数 (Lagrange multiplier)とよばれる).
- $oldsymbol{4}$ ラグランジュの未定乗数法を用いて g(x,y)=0 の下で f(x,y) の極値を求めよ.

$$g(x,y) = x^4 + y^4 - 1,$$
 $f(x,y) = x + 8y$ (問題 5.2.13 (2))