数学演習第二 (演習第9回)

線形:線形写像,核と像

2020年12月16日

- 小テスト の問題は 1 の 4 問です. レポート課題 は 2 の 4 問です.
- それ以外の問題は自習問題です(こちらも是非解いて下さい).
- 要点を読んでから取り組むとよいでしょう.

【要点】

• 線形写像

V,W をベクトル空間とする. 写像 $f:V\to W$ が以下の条件をみたすとき線形写像であるという.

- (1) f は V と W のベクトルの和を保つ: a, $b \in V$ に対し f(a+b) = f(a) + f(b)
- (2) f は V と W のスカラー倍を保つ : $a \in V$, $k \in \mathbb{R}$ に対し f(ka) = kf(a)

写像が線形写像 でない ことを示すには、条件 (1), (2) をみたさない反例を 1 つ挙げればよい.

特に、(1)、(2) から導かれる性質

(0) f は V の零ベクトルを W の零ベクトルに移す : $f(\mathbf{0}_V) = \mathbf{0}_W$

をみたさない場合,f は線形写像ではない.

例 1) $f: \mathbb{R}^2 \to \mathbb{R}^2$ $f\left(\begin{bmatrix} a \\ b \end{bmatrix}\right) = \begin{bmatrix} a+1 \\ b+1 \end{bmatrix}$ は $f\left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}\right) = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ であるため線形写像ではない。 もちろん、性質 (0) をみたしても写像が線形写像であるとは限らない。

例
$$2)$$
 $f: \mathbb{R}^2 \to \mathbb{R}^2$ $f\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x^2 - y^2 \\ xy \end{bmatrix}$ は $f\left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}\right) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ をみたすが、 $f\left(\begin{bmatrix} 2 \\ 2 \end{bmatrix}\right) = \begin{bmatrix} 0 \\ 4 \end{bmatrix} \neq \begin{bmatrix} 0 \\ 2 \end{bmatrix} = 2f\left(\begin{bmatrix} 1 \\ 1 \end{bmatrix}\right)$ となるため、線形写像ではない.

一方、写像 $f:V\to W$ が線形写像であることを示すには、任意のベクトル $a,b\in V$ と $k\in\mathbb{R}$ に対して、(1)、(2) が成り立つことを示す必要がある.

例
$$3)$$
 $f:\mathbb{R}^2 \to \mathbb{R}^2$ $f\left(\begin{bmatrix} a_1 \\ a_2 \end{bmatrix}\right) = \begin{bmatrix} a_1 + a_2 \\ a_1 - a_2 \end{bmatrix}$ が線形写像であることを示す.

$$(1)$$
 $oldsymbol{a}, oldsymbol{b} \in \mathbb{R}^2$ を $oldsymbol{a} = egin{bmatrix} a_1 \ a_2 \end{bmatrix}, oldsymbol{b} = egin{bmatrix} b_1 \ b_2 \end{bmatrix}$ とするとき $oldsymbol{a} + oldsymbol{b} = egin{bmatrix} a_1 + b_1 \ a_2 + b_2 \end{bmatrix}$ なので、

$$f(\boldsymbol{a} + \boldsymbol{b}) = \begin{bmatrix} (a_1 + b_1) + (a_2 + b_2) \\ (a_1 + b_1) - (a_2 + b_2) \end{bmatrix} = \begin{bmatrix} (a_1 + a_2) + (b_1 + b_2) \\ (a_1 - a_2) + (b_1 - b_2) \end{bmatrix} = \begin{bmatrix} a_1 + a_2 \\ a_1 - a_2 \end{bmatrix} + \begin{bmatrix} b_1 + b_2 \\ b_1 - b_2 \end{bmatrix}$$
$$= f(\boldsymbol{a}) + f(\boldsymbol{b})$$

$$(2)$$
 $\mathbf{a} = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$, $k \in \mathbb{R}$ とするとき, $k\mathbf{a} = \begin{bmatrix} ka_1 \\ ka_2 \end{bmatrix}$ なので,

$$f(k\mathbf{a}) = \begin{bmatrix} ka_1 + ka_2 \\ ka_1 - ka_2 \end{bmatrix} = k \begin{bmatrix} a_1 + a_2 \\ a_1 - a_2 \end{bmatrix} = kf(\mathbf{a})$$

● 線形写像の決定

V,W をベクトル空間, (a_1,\ldots,a_n) を V の基底, b_1,\ldots,b_n を W のベクトルとするとき, $f(a_1)=b_1,\ldots f(a_n)=b_n$, をみたす線形写像 $f:V\to W$ は 1 つに定められる. これは, (a_1,\ldots,a_n) が V の基底であることから, 任意の $a\in V$ に対して, $a=c_1a_1+\cdots+c_na_n$ と 1 通りに表すことができ, さらに f が線形写像であることから

$$f(\boldsymbol{a}) = f(c_1 \boldsymbol{a}_1 + \dots + c_n \boldsymbol{a}_n) = f(c_1 \boldsymbol{a}_1) + \dots + f(c_n \boldsymbol{a}_n)$$

= $c_1 f(\boldsymbol{a}_1) + \dots + c_n f(\boldsymbol{a}_n) = c_1 \boldsymbol{b}_1 + \dots + c_n \boldsymbol{b}_n$

と, f(a) を定められることによる.

例 4)
$$f\left(\begin{bmatrix}1\\1\end{bmatrix}\right) = \begin{bmatrix}1\\1\\1\end{bmatrix}, \ f\left(\begin{bmatrix}1\\2\end{bmatrix}\right) = \begin{bmatrix}1\\2\\3\end{bmatrix}$$
 をみたす線形写像 $f:\mathbb{R}^2 \to \mathbb{R}^3$ があるとき、一般のベクトル $\begin{bmatrix}x_1\\x_2\end{bmatrix} \in \mathbb{R}^3$ について $f\left(\begin{bmatrix}x_1\\x_2\end{bmatrix}\right)$ を求める。 まず、 $\begin{bmatrix}x_1\\x_2\end{bmatrix} \in \mathbb{R}^2$ を $\begin{bmatrix}1\\1\end{bmatrix} \succeq \begin{bmatrix}1\\2\end{bmatrix}$ の一次結合で表すと、 $\begin{bmatrix}x_1\\x_2\end{bmatrix} = c_1\begin{bmatrix}1\\1\end{bmatrix} + c_2\begin{bmatrix}1\\2\end{bmatrix} = \begin{bmatrix}1&1\\1&2\end{bmatrix}\begin{bmatrix}c_1\\c_2\end{bmatrix} \succeq$ なるので、連立一次方程式を解いて $\begin{bmatrix}c_1\\c_2\end{bmatrix} = \begin{bmatrix}2x_1-x_2\\-x_1+x_2\end{bmatrix}$ を得る。 これより、 $\begin{bmatrix}x_1\\x_2\end{bmatrix} = (2x_1-x_2)\begin{bmatrix}1\\1\end{bmatrix} + (-x_1+x_2)\begin{bmatrix}1\\2\end{bmatrix}$.ここで、 f は線形写像なので、
$$f\left(\begin{bmatrix}x_1\\x_2\end{bmatrix}\right) = (2x_1-x_2)f\left(\begin{bmatrix}1\\1\end{bmatrix}\right) + (-x_1+x_2)f\left(\begin{bmatrix}1\\2\end{bmatrix}\right) = (2x_1-x_2)\begin{bmatrix}1\\1\end{bmatrix} + (-x_1+x_2)\begin{bmatrix}1\\2\\3\end{bmatrix}$$

$$= \begin{bmatrix}x_1\\x_2\\-x_1+2x_2\end{bmatrix}.$$

● 線形写像の核、像

 $V,\,W$ をベクトル空間, $f:V\to W$ を線形写像とするとき、

 $\operatorname{Ker}(f) = \{ a \in V \mid f(a) = \mathbf{0}_W \}$ を f の核, $\operatorname{Im}(f) = \{ f(a) \mid a \in V \}$ を f の像と呼ぶ.

Ker(f), Im(f) はそれぞれ V, W の部分空間になる.

A を $m \times n$ 行列とする. $f_A(x) = Ax$ で定義される写像 $f_A: \mathbb{R}^n \to \mathbb{R}^m$ は線形写像になるが、

 $\operatorname{Ker}(f_A) = \{x \in \mathbb{R}^n \mid Ax = \mathbf{0}\}$ は同次連立一次方程式 $Ax = \mathbf{0}$ の解空間 N(A) に一致する.

また、 (e_1,\ldots,e_n) を \mathbb{R}^n の標準基底とするとき、 $\mathrm{Im}(f_A)$ は $f_A(e_1),\ldots,f_A(e_n)$ で生成される: $\mathrm{Im}(f_A)=\langle f_A(e_1),\ldots,f_A(e_n)\rangle$

ここで、 $A=[a_1,\ldots,a_n]$ とするとき $f_A(e_1)=Ae_1=a_1,\ldots,f_A(e_n)=Ae_n=a_n$ となるため、 $\operatorname{Im}(f)=\langle a_1,\ldots,a_n\rangle$ 、すなわち、 $\operatorname{Im}(f)$ は A の列空間 C(A) に一致する.

● 単射, 全射

写像 $f:V\to W$ が単射であるとは $a,b\in V,\,a\neq b\implies f(a)\neq f(b)$ であることをいう. また f が全射であるとは, f(V)=W であることをいう.

f が線形写像であるとき,

$$f$$
 が単射 \iff $\dim \operatorname{Ker}(f) = 0 (\iff \operatorname{Ker}(f) = \{\mathbf{0}\})$ f が全射 \iff $\dim \operatorname{Im}(f) = \dim W$

が成り立つ.

【小テスト,レポート課題】

1 (小テスト)

(1) 次に挙げる写像のうち、線形写像でないものを すべて 選べ.

(\mathcal{P}) $f: \mathbb{R} \to \mathbb{R}, f(x) = 3x$

$$\textbf{(1)} \ \ f: \mathbb{R}^2 \to \mathbb{R}^2, \ f\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x+y \\ xy \end{bmatrix}$$

(ウ)
$$f: \mathbb{R} \to \mathbb{R}^3$$
, $f(x) = xa + (1-x)b$

- (エ) $f: \mathbb{R}^3 \to \mathbb{R}^3$, $f(x) = a \times x$ ここで, $a \in \mathbb{R}^3$
- $(2) \ f\left(\begin{bmatrix} 4 \\ 5 \end{bmatrix}\right) = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \ f\left(\begin{bmatrix} 5 \\ 4 \end{bmatrix}\right) = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} \$ をみたす線形写像 $f: \mathbb{R}^2 \to \mathbb{R}^3$ に対し、 $f\left(egin{array}{c} 2 \\ 1 \end{array}
 ight)$ の最初の成分は何か.
 - (ア) 0 (イ) $\frac{1}{2}$ (ウ) $\frac{5}{9}$ (エ) 1
- $(3)\ 4\times5\ 行列\ A=\begin{bmatrix}1&2&1&-3&2\\3&6&4&2&-1\\5&10&6&-4&3\\2&4&1&-17&11\end{bmatrix}$ に対して、線形写像 $f_A:\mathbb{R}^5\to\mathbb{R}^4$ を $f_A(\boldsymbol{x})=A\boldsymbol{x}$ とす

るとき、 $\dim \operatorname{Ker}(f_A)$ の値を次の中から選べ、

- (イ) 2 (ウ) 3 (エ) 4 (ア) 1
- (4) (3) の線形写像 f_A に対し $\dim \mathrm{Im}(f_A)$ の値を次の中から選べ.
 - (7) 1 (1) 2 (1) 3 (1) 4

2 (レポート課題)

$$(1) \ f\left(\begin{bmatrix} 5 \\ 2 \end{bmatrix}\right) = \begin{bmatrix} -4 \\ -7 \\ 12 \end{bmatrix}, \ f\left(\begin{bmatrix} 4 \\ 1 \end{bmatrix}\right) = \begin{bmatrix} 1 \\ 4 \\ -6 \end{bmatrix}, \ \textbf{をみたす線形写像} \ f: \mathbb{R}^2 \to \mathbb{R}^3 \ に対して, \ f\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) \ \textbf{を 求めよ}.$$

$$(2) \ f\left(\begin{bmatrix}2\\1\\1\end{bmatrix}\right) = \begin{bmatrix}1\\2\\3\end{bmatrix}, \ f\left(\begin{bmatrix}1\\2\\1\end{bmatrix}\right) = \begin{bmatrix}2\\3\\1\end{bmatrix}, \ f\left(\begin{bmatrix}1\\1\\2\end{bmatrix}\right) = \begin{bmatrix}3\\1\\2\end{bmatrix} \$$
をみたす線形写像 $f:\mathbb{R}^3 \to \mathbb{R}^3$ に対して、 $f\left(\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix}\right)$ を求めよ.

- (3) $A=egin{bmatrix} 3&-2&10&2a+5\ 9&1&2&1-a\ 9&4&-10&-5a-2 \end{bmatrix}$ に対して、線形写像 $f:\mathbb{R}^4\to\mathbb{R}^3,\,f(x)=Ax$ が全射にならないための a がみたす条件を求めよ.このとき、 $\mathrm{Im}(f)$ の次元と基底をもとめよ.
- (4) (3) の行列 A について $g: \mathbb{R}^3 \to \mathbb{R}^4$, $g(x) = {}^t Ax$ が単射にならないための a がみたす条件を求めよ. このとき, $\operatorname{Ker}(g)$ の次元と基底をもとめよ.

【それ以外の自習用の問題】

3 次の写像は線形写像になるか、線形写像である場合にはそれを示し、線形写像でない場合にはその理由を述べよ.

$$(1)$$
 $f\left(\left[egin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}
ight]
ight)=\left[egin{array}{c} x_1+x_2 \\ x_1+x_3 \end{array}
ight]$ で定義される写像 $f:\mathbb{R}^3 o \mathbb{R}^2$

$$(2) \quad f\Bigg(\left[\begin{array}{c} x_1\\ x_2\\ x_3 \end{array}\right]\Bigg) = \left[\begin{array}{c} x_1+x_2+x_3+1\\ x_1+x_2+x_3+1 \end{array}\right] \ \mathtt{で定義される写像} \ f:\mathbb{R}^3 \to \mathbb{R}^2$$

$$f\left(\left[egin{array}{c} x_1 \ x_2 \end{array}
ight]
ight)=x_1^2+x_1x_2+x_2^2$$
 で定義される写像 $f:\mathbb{R}^2 o\mathbb{R}$

- (4) f(p(t))=p'(t) で定義される写像 $f:\mathbb{R}[t]_3 o\mathbb{R}[t]_2$ (下の注釈を参照)
- $oxed{4}$ m imes n 行列 A を次のように定めるとき、おのおのの A が決める \mathbb{R}^n から \mathbb{R}^m への線形写像 $f(oldsymbol{x})=Aoldsymbol{x}$ について以下の問に答えよ.

(ii)
$$\begin{bmatrix} 1 & 1 & 1 \\ -1 & -1 & 1 \end{bmatrix}$$
 (iv)
$$\begin{bmatrix} 1 & 3 & 4 \\ 1 & -1 & 0 \\ 2 & 5 & 7 \end{bmatrix}$$
 (v)
$$\begin{bmatrix} 1 & 3 & 4 \\ 1 & -1 & 0 \\ 2 & 5 & 6 \end{bmatrix}$$

- (1) $\operatorname{Ker}(f)$ の次元と基底を求めよ. $(\{\mathbf{0}\}\$ の場合, 基底は無し, 次元は $\$ 0 であることに注意せよ.)
- (2) Im(f) の次元と基底を求めよ.
- (3) f は 1 対 1 写像であるか、上への写像であるか、
- $oldsymbol{\mathsf{5}}$ $\mathbb{R}[t]_3$ を 3 次以下の多項式全体からなる線形空間とする.

線形写像 $D: \mathbb{R}[t]_3 \to \mathbb{R}[t]_3$ (下の注釈を参照) を

$$D(p(t)) = 2p(t) - (t+1)p'(t)$$
 $(p(t) \in \mathbb{R}[t]_3)$

と定義するとき、Dの核および像の次元および基底を求めよ.

 $[\]mathbb{R}[t]_n = \{a_0 + a_1t + a_2t^2 + \dots + a_nt^n \mid a_0, a_1, a_2, \dots, a_n \in \mathbb{R}\}$ (n 次以下の実係数 1 変数多項式全体) は、基底として $(1, t, t^2, \dots, t^n)$ が取れるような、n+1 次元ベクトル空間である.