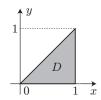
数学演習第二・期末統一試験【解説】

2023 年 2 月 8 日実施 · 試験時間 90 分

1 次の2重積分の値を計算せよ. ただし, (3) の log は自然対数を表す.

(1)
$$\iint_D xy \, dx dy, \quad D: \ 0 \le y \le x \le 1.$$

【答】 (与式) =
$$\iint_{\substack{0 \le x \le 1 \\ 0 \le y \le x}} xy \, dx dy = \int_0^1 dx \int_0^x xy \, dy = \int_0^1 \left[\frac{1}{2} x y^2 \right]_{y=0}^{y=x} dx$$
$$= \int_0^1 \frac{1}{2} x^3 \, dx = \left[\frac{1}{8} x^4 \right]_0^1 = \boxed{\frac{1}{8}}.$$



(2)
$$\iint_{D} \cos(x+y) \, dx dy, \quad D: \ 0 \le x \le \pi, \ 0 \le y \le \frac{\pi}{2}$$

【答】 (与式) =
$$\iint_{\substack{0 \le x \le \pi \\ 0 \le y \le \frac{\pi}{2}}} \cos(x+y) \, dx dy = \int_0^\pi dx \int_0^{\frac{\pi}{2}} \cos(x+y) \, dy = \int_0^\pi \Big[\sin(x+y) \Big]_{y=0}^{y=\frac{\pi}{2}} \, dx$$

$$= \int_0^\pi (\cos x - \sin x) \, dx = \Big[\sin x + \cos x \Big]_0^\pi = \boxed{-2} \, .$$
[別法] (与式) =
$$\iint_{\substack{0 \le x \le \pi \\ 0 \le y \le \frac{\pi}{2}}} (\cos x \cos y - \sin x \sin y) \, dx dy$$

$$= \left(\int_0^\pi \cos x \, dx \right) \left(\int_0^{\frac{\pi}{2}} \cos y \, dy \right) - \left(\int_0^\pi \sin x \, dx \right) \left(\int_0^{\frac{\pi}{2}} \sin y \, dy \right) = 0 \cdot 1 - 2 \cdot 1 = \boxed{-2} \, .$$

(3)
$$\iint_D \log(x^2 + y^2) dx dy$$
, $D: 1 \le x^2 + y^2 \le 4$, $y \ge 0$.

【答】 極座標変換 $x=r\cos\theta,\,y=r\sin\theta$ を用いる。ヤコビアンは $\frac{\partial(x,y)}{\partial(r,\theta)}=r$ であり、D は $r\theta$ 平面の閉領域 $1\leq r\leq 2,\,0\leq\theta\leq\pi$ に対応するから、

$$(\not\ni \vec{\pi}) = \iint_{\substack{1 \le r \le 2 \\ 0 \le \theta \le \pi}} \log r^2 \cdot r \, dr d\theta = \left(\int_1^2 2r \log r \, dr \right) \left(\int_0^{\pi} d\theta \right)$$
$$= \left(\left[r^2 \log r \right]_1^2 - \int_1^2 r^2 \cdot \frac{1}{r} \, dr \right) \pi = \pi \left(4 \log 2 - \left[\frac{1}{2} r^2 \right]_1^2 \right) \pi = \overline{\left(4 \log 2 - \frac{3}{2} \right) \pi} \,.$$

(4)
$$\iint_D (x+y) e^{x-y} dxdy$$
, $D: 0 \le x+y \le 1$, $(x+y)^2 \le x-y \le 1$.

【答】 $u=x+y,\,v=x-y$ による変数変換を用いる. このとき, $x=\frac{1}{2}(u+v),\,y=\frac{1}{2}(u-v)$ であり, ヤコビアンは $\frac{\partial(x,y)}{\partial(u,v)}=\left|\begin{array}{cc} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{array}\right|=-\frac{1}{2}.$ D は uv 平面の閉領域 $0\leq u\leq 1,\,u^2\leq v\leq 1$ に対応するので,

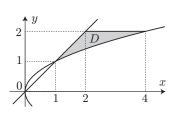
$$\begin{split} (\not \ni \vec{\pi}) &= \iint_{\substack{0 \leq u \leq 1 \\ u^2 \leq v \leq 1}} u e^v \left| -\frac{1}{2} \right| du dv = \frac{1}{2} \int_0^1 du \int_{u^2}^1 u e^v \, dv = \frac{1}{2} \int_0^1 \left[u e^v \right]_{v=u^2}^{v=1} du \\ &= \frac{1}{4} \int_0^1 2u (e - e^{u^2}) \, du \overset{u^2 = w}{=} \, \frac{1}{4} \int_0^1 (e - e^w) \, dw = \frac{1}{4} \left[ew - e^w \right]_0^1 = \boxed{\frac{1}{4}} \, . \end{split}$$

2 (5) 連続関数 f(x,y) に対して, 等式

$$\int_{1}^{2} dy \int_{y}^{y^{2}} f(x,y) dx = \int_{1}^{\boxed{\mathbf{7}}} dx \int_{\boxed{\mathbf{4}}}^{\boxed{\mathbf{7}}} f(x,y) dy + \int_{\boxed{\mathbf{7}}}^{4} dx \int_{\boxed{\mathbf{4}}}^{\boxed{\mathbf{T}}} f(x,y) dy$$

が成り立つ. このとき、アからエに入るべき適切な数値または数式を答えよ.

【答】 (左辺) =
$$\iint_{\substack{1 \leq y \leq 2 \\ y \leq x \leq y^2}} f(x,y) \, dx dy$$
$$= \iint_{\substack{1 \leq x \leq 2 \\ \sqrt{x} \leq y \leq x}} f(x,y) \, dx dy + \iint_{\substack{2 \leq x \leq 4 \\ \sqrt{x} \leq y \leq 2}} f(x,y) \, dx dy$$
$$= \int_{1}^{2} dx \int_{\sqrt{x}}^{x} f(x,y) \, dy + \int_{2}^{4} dx \int_{\sqrt{x}}^{2} f(x,y) \, dy = (右辺).$$
よって、ア $\boxed{2}$ 、イ $\boxed{\sqrt{x}}$, \boxed{x} , \boxed{x}



3 (6) 3 重積分

$$I = \iiint_{V} \frac{1}{1 + x^2 + y^2 + z^2} dx dy dz, \quad V: \ x^2 + y^2 + z^2 \le 1, \ z \le 0$$

を考える. V は極座標変換 $x = r \sin \theta \cos \varphi$, $y = r \sin \theta \sin \varphi$, $z = r \cos \theta$ により,

に対応する. I の値を計算すると, I= **ケ** となる. このとき, **カ** から **ケ** に入るべき適切な数値または数式を答えよ.

【答】 空間の極座標変換 $x=r\sin\theta\cos\varphi,\ y=r\sin\theta\sin\varphi,\ z=r\cos\theta$ のヤコビアンは $\frac{\partial(x,y,z)}{\partial(r,\theta,\varphi)}=r^2\sin\theta$ であり、この変換で V は $r\theta\varphi$ 空間の閉領域 $W:\ 0\leq r\leq 1,\ \frac{\pi}{2}\leq\theta\leq\pi,\ 0\leq\varphi\leq 2\pi$ に対応するから、

- **4** 2 変数関数 $g(x,y)=x^3+3x^2y+3y^2+1$ について考える. g(x,y)=0 で定義される陰関数を $y=\varphi(x)$ として、以下の設問に答えよ.
 - $(7) \varphi'(x)$ を x, y の有理式で表せ.

【答】 陰関数 $y=\varphi(x)$ は曲線 g(x,y)=0 上の $g_y(x,y)=3(x^2+2y)\neq 0$ を満たす範囲で定義される. $g(x,y)=x^3+3x^2y+3y^2+1=0$ $(y=\varphi(x))$ を x で微分して,

$$g_x(x,y) + g_y(x,y)y' = 0.$$
 $\therefore y' = \varphi'(x) = -\frac{g_x(x,y)}{g_y(x,y)} = -\frac{3(x^2 + 2xy)}{3(x^2 + 2y)} = \boxed{-\frac{x^2 + 2xy}{x^2 + 2y}}$

- (8) $\varphi(x)$ の極値をすべて求め、解答欄には「点 x=a で極大値(または極小値)b をとる」という形式で答えを記せ.
 - 【答】 $y=\varphi(x)$ が極値をとる点においては $y'=\varphi'(x)=0$ を満たすので、まず $g(x,y)=x^3+3x^2y+3y^2+1=0,\quad g_x(x,y)=3x(x+2y)=0$

$$y'' = -\frac{g_{xx}(x,y) + 2g_{xy}(x,y)y' + g_{yy}(x,y)(y')^2}{g_y(x,y)} \quad (y = \varphi(x))$$

であるから、 $g_{xx}(x,y)=6(x+y)$ 、 $\varphi'(2)=0$ に注意して、 $\varphi''(2)=-\frac{g_{xx}(2,-1)}{g_y(2,-1)}=-1<0$. よって、 $\varphi(x)$ は 点 x=2 で極大値 -1 をとる .

(9)
$$f(x,y) = x + y$$
, $F(x,y,\lambda) = f(x,y) - \lambda g(x,y)$ とおくとき, 連立方程式

$$F_x(x, y, \lambda) = 0, \ F_y(x, y, \lambda) = 0, \ g(x, y) = 0$$

の解 (x, y, λ) をすべて求めよ.

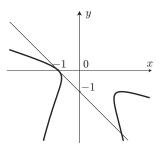
【答】 $F_x(x,y,\lambda) = 0, F_y(x,y,\lambda) = 0, g(x,y) = 0$ を具体的に書くと、

$$1 - 3\lambda(x^2 + 2xy) = 0, \quad 1 - 3\lambda(x^2 + 2y) = 0, \quad x^3 + 3x^2y + 3y^2 + 1 = 0.$$

最初の 2 式より、 $\lambda \neq 0$ であって、 $x^2 + 2xy = x^2 + 2y = \frac{1}{3\lambda}$. これより、xy = y が導かれ、x = 1 または y = 0. 第 3 式より、x = 1 のときは $3y^2 + 3y + 2 = 0$ (判別式が負)となり不適、y = 0 のときは $x^3 + 1 = (x+1)(x^2 - x + 1) = 0$ となり x = -1. よって、求める解は $(x,y,\lambda) = \left(-1,0,\frac{1}{3}\right)$.

(10) 条件 g(x,y)=0 の下で、関数 f(x,y)=x+y の極値をすべて求め、解答欄には「点 (c,d) で極大値(または極小値)m をとる」という形式で答えを記せ、

【答】極値をとる点の候補は (-1,0) に限られる.この点の近傍で g(x,y)=0 は $y=\varphi(x)$ と書けるから,x=-1 の近傍で関数 $h(x):=f(x,\varphi(x))=x+\varphi(x)$ を考え,x=-1 での値 $h(-1)=-1+\varphi(-1)=-1$ が極値かどうかを調べれ ばよい.ここで, $g_{xy}(x,y)=6x$, $g_{yy}(x,y)=6$ に注意して $(g_x(x,y),g_y(x,y)$ は既に計算した),



$$g_x(-1,0) = g_y(-1,0) = 3, \ g_{xx}(-1,0) = g_{xy}(-1,0) = -6, \ g_{yy}(-1,0) = 6,$$

 $\varphi'(-1) = -\frac{g_x(-1,0)}{g_y(-1,0)} = -1 \quad (\Rightarrow \ h'(-1) = 0).$

$$h''(-1) = \varphi''(-1) = -\frac{(-6) + 2(-6)(-1) + 6(-1)^2}{3} = -4 < 0.$$

よって, 与えられた条件付き極値問題は $\boxed{ 点 (-1,0) }$ において極大値 -1 をとる

《注》 厳密には g(x,y)=0 上に特異点 $(g_x=g_y=0$ となる点) がないことも示す必要がある。これは次のように示される。まず、(8) で見たように、 $g=g_x=0$ を満たす点は (2,-1) のみ。この点で $g_y(2,-1)=6\neq 0$ であるから g(x,y)=0 上に特異点は存在しないことが分かる。

5 *a*, *b* を実数の定数とする.

$$f\left(\begin{bmatrix} x_1\\x_2\\x_3\\x_4 \end{bmatrix}\right) = \begin{bmatrix} x_1 - 4x_2 + 5x_3 + 7x_4\\-2x_1 + 3x_2 - x_3 - 3x_4\\4x_1 - x_2 + ax_3 + bx_4 \end{bmatrix}$$

によって定義される線形写像 $f: \mathbb{R}^4 \to \mathbb{R}^3$ に対して、以下の設問に答えよ.

(11) f の像 $\operatorname{Im} f$ の次元 $\dim(\operatorname{Im} f)$ が 3 であるための a,b の条件を求めよ.

【答】 行基本変形により、

$$\begin{bmatrix} 1 & -4 & 5 & 7 \\ -2 & 3 & -1 & -3 \\ 4 & -1 & a & b \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -4 & 5 & 7 \\ 0 & -5 & 9 & 11 \\ 0 & 15 & a - 20 & b - 28 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -4 & 5 & 7 \\ 0 & -5 & 9 & 11 \\ 0 & 0 & a + 7 & b + 5 \end{bmatrix}.$$

 $\dim(\operatorname{Im} f)=3$ であるためには上の行列の階数が 3, すなわち最後の行列の第 3 行が零ベクトルでなければよいので、求める条件は $\boxed{a\neq -7}$ または $b\neq -5$. この条件は $\boxed{(a,b)\neq (-7,-5)}$ と書くこともできる.

(12) a=-7 とする. f の核 $\operatorname{Ker} f$ の次元 $\dim(\operatorname{Ker} f)$ が 2 になるための b の条件を求めよ.

【答】
$$a=-7$$
 のとき、上の行基本変形は $\begin{bmatrix} 1 & -4 & 5 & 7 \\ -2 & 3 & -1 & -3 \\ 4 & -1 & -7 & b \end{bmatrix} \rightarrow \cdots \rightarrow \begin{bmatrix} 1 & -4 & 5 & 7 \\ 0 & -5 & 9 & 11 \\ 0 & 0 & 0 & b+5 \end{bmatrix}$ となる.

 $\dim(\operatorname{Im} f)=4-\dim(\operatorname{Ker} f)=4-2=2$ (上の行列の階数が 2) となればよいので、求める条件は b=-5

(13) a = -7 とする. 次元 $\dim(\operatorname{Ker} f)$ が 1 であるとき, $\operatorname{Ker} f$ の基底を 1 つ求めよ.

【答】 a = -7 のとき, $\dim(\operatorname{Im} f) = 4 - \dim(\operatorname{Ker} f) = 4 - 1 = 3$ となる条件は $b \neq -5$. このとき,

$$\begin{bmatrix} 1 & -4 & 5 & 7 \\ -2 & 3 & -1 & -3 \\ 4 & -1 & -7 & b \end{bmatrix} \rightarrow \cdots \rightarrow \begin{bmatrix} 1 & -4 & 5 & 7 \\ 0 & -5 & 9 & 11 \\ 0 & 0 & 0 & b + 5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -4 & 5 & 7 \\ 0 & 1 & -\frac{9}{5} & -\frac{11}{5} \\ 0 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -\frac{11}{5} & 0 \\ 0 & 1 & -\frac{9}{5} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

と行基本変形されるので、 $\operatorname{Ker} f$ の基底は $\left[\left(\begin{bmatrix} 11\\9\\5\\0 \end{bmatrix} \right) \right]$.

「6]
$$p, q$$
 を実数とし、 $\mathbf{a}_1 = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}$, $\mathbf{a}_2 = \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}$, $\mathbf{b}_1 = \begin{bmatrix} p \\ 1 \\ 0 \end{bmatrix}$, $\mathbf{b}_2 = \begin{bmatrix} q \\ 0 \\ 1 \end{bmatrix}$ とする、そして、 $W = \langle \mathbf{a}_1, \mathbf{a}_2 \rangle$, $\mathcal{A} = (\mathbf{a}_1, \mathbf{a}_2)$, $\mathcal{B} = (\mathbf{b}_1, \mathbf{b}_2)$ とし、

$$g\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_1 + 3x_2 \\ -2x_2 + 6x_3 \\ x_1 + x_2 + 2x_3 \end{bmatrix}$$

によって線形変換 $g: \mathbb{R}^3 \to \mathbb{R}^3$ を定め, $\mathcal{C} = (g(\boldsymbol{a}_1), g(\boldsymbol{a}_2))$ とするとき, 以下の設問に答えよ.

(14) \mathcal{B} が W の 1 つの基底となるように, p, q の値を定めよ. 以下, p, q をこれらの値とする.

【答】 少なくとも $a_1, a_2 \in \langle b_1, b_2 \rangle$ でなければならないから, a_1, a_2, b_1, b_2 の第 2 成分、第 3 成分に注目して,

$$m{a}_1 = 3m{b}_1 + 2m{b}_2 = egin{bmatrix} 3p + 2q \ 3 \ 2 \end{bmatrix}, \quad m{a}_2 = 2m{b}_1 + m{b}_2 = egin{bmatrix} 2p + q \ 2 \ 1 \end{bmatrix}.$$

これより、3p+2q=1、2p+q=0 であるから、 $\boxed{p=-1,\ q=2}$. このとき、 $W=\langle {\pmb a}_1, {\pmb a}_2 \rangle \subset \langle {\pmb b}_1, {\pmb b}_2 \rangle$ かつ $\dim \langle {\pmb a}_1, {\pmb a}_2 \rangle = \dim \langle {\pmb b}_1, {\pmb b}_2 \rangle = 2$ であるから、 $W=\langle {\pmb a}_1, {\pmb a}_2 \rangle = \langle {\pmb b}_1, {\pmb b}_2 \rangle$ となり、 ${\mathcal A}=({\pmb a}_1, {\pmb a}_2)$ 、 がともに W の基底であることが分かる.

(15) 基底 \mathcal{B} に関する \mathbf{a}_1 , \mathbf{a}_2 の座標 $[\mathbf{a}_1]_{\mathcal{B}}$, $[\mathbf{a}_2]_{\mathcal{B}}$ を求めよ.

【答】 p = -1, q = 2 のとき, (14) の結果により, $a_1 = 3b_1 + 2b_2$, $a_1 = 2b_1 + b_2$. よって,

$$oxed{egin{bmatrix} [m{a}_1]_{\mathcal{B}} = egin{bmatrix} 3 \ 2 \end{bmatrix}, \ [m{a}_2]_{\mathcal{B}} = egin{bmatrix} 2 \ 1 \end{bmatrix}.}$$

(16) 基底 $\mathcal{A} = (a_1, a_2)$ から基底 $\mathcal{C} = (g(a_1), g(a_2))$ への基底変換行列を求めよ.

【答】 W の基底 \mathcal{A} から \mathcal{C} への基底変換行列を M とすれば、 $\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 \end{bmatrix} M = \begin{bmatrix} g(\mathbf{a}_1) & g(\mathbf{a}_2) \end{bmatrix}$. このとき、 $g(\mathbf{a}_1) = \begin{bmatrix} 10 \\ 6 \\ 8 \end{bmatrix}$, $g(\mathbf{a}_2) = \begin{bmatrix} 6 \\ 2 \\ 4 \end{bmatrix}$ であるから、行基本変形により、

$$\begin{bmatrix} \boldsymbol{a}_1 & \boldsymbol{a}_2 & g(\boldsymbol{a}_1) & g(\boldsymbol{a}_2) \end{bmatrix} = \begin{bmatrix} 1 & 0 & 10 & 6 \\ 3 & 2 & 6 & 2 \\ 2 & 1 & 8 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 10 & 6 \\ 0 & 2 & -24 & -16 \\ 0 & 1 & -12 & -8 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 10 & 6 \\ 0 & 1 & -12 & -8 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

よって, $M=egin{bmatrix} 10 & 6 \\ -12 & -8 \end{bmatrix}$. 定義により, M は $g:W\to W$ の基底 $\mathcal A$ に関する表現行列に他ならない.

(17) g(W)=W であるから, g は W の線形変換 $g:W\to W$ とみなせる. このとき, $g:W\to W$ の基底 $\mathcal B$ に関する表現行列を求めよ.

【答】 $g:W\to W$ の $\mathcal B$ に関する表現行列を M' とすれば、 $\left\lceil g(m b_1) \ g(m b_2) \right\rceil = \left\lceil m b_1 \ m b_2 \right\rceil M'$. このとき、

$$m{b}_1 = egin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}, m{b}_2 = egin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}, g(m{b}_1) = egin{bmatrix} 2 \\ -2 \\ 0 \end{bmatrix}, g(m{b}_2) = egin{bmatrix} 2 \\ 6 \\ 4 \end{bmatrix}$$
 であるから、行基本変形により、
$$egin{bmatrix} [m{b}_1 & m{b}_2 & g(m{b}_1) & g(m{b}_2) \end{bmatrix} = egin{bmatrix} -1 & 2 & 2 & 2 \\ 1 & 0 & -2 & 6 \\ 0 & 1 & 0 & 4 \end{bmatrix} \rightarrow egin{bmatrix} 1 & 0 & -2 & 6 \\ 0 & 1 & 0 & 4 \\ -1 & 2 & 2 & 2 \end{bmatrix} \rightarrow egin{bmatrix} 1 & 0 & -2 & 6 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

よって、
$$M' = \begin{bmatrix} -2 & 6 \\ 0 & 4 \end{bmatrix}$$
.

《別法》 $\mathcal B$ から $\mathcal A$ への基底変換行列を P とすれば, $g:W\to W$ の $\mathcal A$ に関する表現行列 M および $\mathcal B$ に関する表現行列 M' に対して, $M=P^{-1}M'P$ が成り立つ. (15), (16) の結果より, $P=\begin{bmatrix}3&2\\2&1\end{bmatrix}$, $M=\begin{bmatrix}10&6\\-12&-8\end{bmatrix}$ であるから,

$$M' = PMP^{-1} = \begin{bmatrix} 3 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 10 & 6 \\ -12 & -8 \end{bmatrix} \begin{bmatrix} 3 & 2 \\ 2 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 6 & 2 \\ 8 & 4 \end{bmatrix} \begin{bmatrix} -1 & 2 \\ 2 & -3 \end{bmatrix} = \begin{bmatrix} -2 & 6 \\ 0 & 4 \end{bmatrix}.$$

- $egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} 1 & -2 & 2 \\ 1 & -2 & 1 \\ 1 & -1 & 0 \end{aligned} \end{aligned}$ に対して、以下の設問に答えよ.
 - (18) M の固有値をすべて求めよ.
 - 【答】 行列 M の固有多項式は

$$F_{M}(\lambda) = \begin{vmatrix} \lambda - 1 & 2 & -2 \\ -1 & \lambda + 2 & -1 \\ -1 & 1 & \lambda \end{vmatrix} \stackrel{\text{$\hat{\pi}$ 1M}}{=} \begin{vmatrix} \lambda + 1 & 2 & -2 \\ \lambda + 1 & \lambda + 2 & -1 \\ 0 & 1 & \lambda \end{vmatrix} = (\lambda + 1) \begin{vmatrix} 1 & 2 & -2 \\ 1 & \lambda + 2 & -1 \\ 0 & 1 & \lambda \end{vmatrix}$$
$$= (\lambda + 1) \begin{vmatrix} 1 & 2 & -2 \\ 0 & \lambda & 1 \\ 0 & 1 & \lambda \end{vmatrix} = (\lambda + 1) \begin{vmatrix} \lambda & 1 \\ 1 & \lambda \end{vmatrix} = (\lambda + 1)(\lambda^{2} - 1) = (\lambda + 1)^{2}(\lambda - 1).$$

(もちろん, 3次の行列式の展開公式を用いて計算してもよい.) よって, M の固有値は $\boxed{-1,1}$

- (19) M の最大の固有値に対する固有空間の基底を1つ求めよ.
 - 【答】 M の最大固有値は 1. 固有値 1 の固有ベクトルを求めるために Mx=x を解く.

$$E-M = \begin{bmatrix} 0 & 2 & -2 \\ -1 & 3 & -1 \\ -1 & 1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & -1 \\ -1 & 3 & -1 \\ 0 & 2 & -2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & -1 \\ 0 & 2 & -2 \\ 0 & 2 & -2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

と行基本変形されるので, $Mm{x}=m{x}$ の解は $m{x}=tegin{bmatrix}2\\1\\1\end{bmatrix}$. よって, 固有値 1 の固有空間の基底は $m{\begin{pmatrix}2\\1\\1\end{bmatrix}}$.

(20) ベクトル値関数 $\mathbf{x}(t)=\begin{bmatrix}x_1(t)\\x_2(t)\\x_3(t)\end{bmatrix}$ に対する斉次線形微分方程式 $\mathbf{x}'(t)=M\mathbf{x}(t)$ の解 $\mathbf{x}(t)$ のうち、初期条件

$$x(0) = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 をみたす解 $x(t)$ の第 1 成分 $x_1(t)$ を求めよ.

【答】 まず, M の固有値 -1 に対する固有ベクトルを求めるために, Mx = -x を解く.

$$-E - M = \begin{bmatrix} -2 & 2 & -2 \\ -1 & 1 & -1 \\ -1 & 1 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

と行基本変形されるので、 $M\mathbf{x} = -\mathbf{x}$ の解は $\mathbf{x} = s \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$. よって、 $P = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & -1 \end{bmatrix}$ と定

めれば、
$$P$$
 は正則行列で $P^{-1}MP = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$. ここで、 $\mathbf{x}(t) = P\mathbf{y}(t)$ 、 $\mathbf{y}(t) = \begin{bmatrix} y_1(t) \\ y_2(t) \\ y_3(t) \end{bmatrix}$ とおいて、
$$\mathbf{x}'(t) = M\mathbf{x}(t) \text{ に代入すれば、}$$

$$\begin{bmatrix} y_1'(t) \\ y_2'(t) \\ y_3'(t) \end{bmatrix} = P^{-1}MP \begin{bmatrix} y_1(t) \\ y_2(t) \\ y_3(t) \end{bmatrix} = \begin{bmatrix} y_1(t) \\ -y_2(t) \\ -y_3(t) \end{bmatrix} . \quad \therefore \begin{bmatrix} y_1(t) \\ y_2(t) \\ y_3(t) \end{bmatrix} = \begin{bmatrix} C_1e^t \\ C_2e^{-t} \\ C_3e^{-t} \end{bmatrix}$$
 よって、
$$\begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{bmatrix} = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} C_1e^t \\ C_2e^{-t} \\ C_3e^{-t} \end{bmatrix} = \begin{bmatrix} 2C_1e^t + (C_2 + C_3)e^{-t} \\ C_1e^t + C_2e^{-t} \\ C_1e^t - C_3e^{-t} \end{bmatrix} . \quad \text{初期条件により、}$$

$$\begin{bmatrix} x_1(0) \\ x_2(0) \\ x_3(0) \end{bmatrix} = \begin{bmatrix} 2C_1 + C_2 + C_3 \\ C_1 + C_2 \\ C_1 - C_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} . \qquad \therefore C_1 = C_2 = 1, C_3 = -2.$$

以上より,
$$x_1(t) = 2e^t - e^{-t}$$
.