令和4年度 数学演習第二 期末統一試験【問題用紙】

2023 年 2 月 8 日実施·試験時間 90 分

- **― 解答用紙には答えのみを整理された形で記入すること ―**
- **1** 次の2重積分の値を計算せよ。ただし、(3) の log は自然対数を表す。

(1)
$$\iint_{\mathbb{R}} xy \, dx dy,$$

$$D: 0 \le y \le x \le 1.$$

(2)
$$\iint_{\mathbb{R}} \cos(x+y) \, dx dy,$$

(2)
$$\iint_{\mathcal{D}} \cos(x+y) \, dx dy, \qquad D: \ 0 \le x \le \pi, \ 0 \le y \le \frac{\pi}{2}.$$

(3)
$$\iint_{\mathcal{D}} \log(x^2 + y^2) \, dx dy$$
, $D: 1 \le x^2 + y^2 \le 4, \ y \ge 0$.

$$D: 1 \le x^2 + y^2 \le 4, \ y \ge 0.$$

$$(4) \quad \iint_{-}^{\infty} (x+y) e^{x-y} dxdy,$$

(4)
$$\iint_{D} (x+y) e^{x-y} dxdy, \qquad D: \ 0 \le x+y \le 1, \ (x+y)^2 \le x-y \le 1.$$

2 (5) 連続関数 f(x,y) に対して、等式

$$\int_{1}^{2}dy\int_{y}^{y^{2}}f(x,y)\,dx=\int_{1}^{\boxed{\mathcal{P}}}dx\int_{\boxed{\mathbf{1}}}^{\boxed{\mathbf{p}}}f(x,y)\,dy+\int_{\boxed{\mathbf{P}}}^{4}dx\int_{\boxed{\mathbf{1}}}^{\boxed{\mathbf{z}}}f(x,y)\,dy$$

が成り立つ。このとき、アからエに入るべき適切な数値または数式を答えよ。

3 (6) 3 重積分

$$I = \iiint_{V} \frac{1}{1 + x^2 + y^2 + z^2} dx dy dz, \quad V: \ x^2 + y^2 + z^2 \le 1, \ z \le 0$$

を考える. V は極座標変換 $x = r \sin \theta \cos \varphi$, $y = r \sin \theta \sin \varphi$, $z = r \cos \theta$ により,

$$W: \ 0 \le r \le$$
 , $f = f = f = f$

に対応する. I の値を計算すると, I= $oldsymbol{ au}$ となる. このとき, $oldsymbol{ au}$ から $oldsymbol{ au}$ に入るべ き適切な数値または数式を答えよ

- **4** 2 変数関数 $q(x,y) = x^3 + 3x^2y + 3y^2 + 1$ について考える. q(x,y) = 0 で定義される陰関数 を $y = \varphi(x)$ として、以下の設問に答えよ.
 - $(7) \varphi'(x)$ を x, y の有理式で表せ.
 - (8) $\varphi(x)$ の極値をすべて求め、解答欄には「点 x=a で極大値(または極小値)b をとる」と いう形式で答えを記せ、
 - (9) f(x,y)=x+y, $F(x,y,\lambda)=f(x,y)-\lambda\,g(x,y)$ とおくとき、連立方程式

$$F_x(x, y, \lambda) = 0, \ F_y(x, y, \lambda) = 0, \ g(x, y) = 0$$

の解 (x, y, λ) をすべて求めよ.

(10) 条件 q(x,y) = 0 の下で、関数 f(x,y) = x + y の極値をすべて求め、解答欄には「点 (c,d)で極大値(または極小値) mをとる」という形式で答えを記せ.

$$f\left(\begin{bmatrix} x_1\\x_2\\x_3\\x_4 \end{bmatrix}\right) = \begin{bmatrix} x_1 - 4x_2 + 5x_3 + 7x_4\\-2x_1 + 3x_2 - x_3 - 3x_4\\4x_1 - x_2 + ax_3 + bx_4 \end{bmatrix}$$

によって定義される線形写像 $f: \mathbb{R}^4 \to \mathbb{R}^3$ に対して、以下の設問に答えよ、

- (11) f の像 $\operatorname{Im} f$ の次元 $\dim(\operatorname{Im} f)$ が 3 であるための a, b の条件を求めよ.
- (12) a = -7 とする. f の核 Ker f の次元 dim(Ker f) が 2 になるための b の条件を求めよ.
- (13) a = -7 とする. 次元 $\dim(\operatorname{Ker} f)$ が 1 であるとき、 $\operatorname{Ker} f$ の基底を 1 つ求めよ.

「6」
$$p,q$$
 を実数とし、 $\boldsymbol{a}_1 = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}$, $\boldsymbol{a}_2 = \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}$, $\boldsymbol{b}_1 = \begin{bmatrix} p \\ 1 \\ 0 \end{bmatrix}$, $\boldsymbol{b}_2 = \begin{bmatrix} q \\ 0 \\ 1 \end{bmatrix}$ とする。そして、 $W = \langle \boldsymbol{a}_1, \, \boldsymbol{a}_2 \rangle$, $\mathcal{A} = (\boldsymbol{a}_1, \, \boldsymbol{a}_2)$, $\mathcal{B} = (\boldsymbol{b}_1, \, \boldsymbol{b}_2)$ とし、

$$g\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_1 + 3x_2 \\ -2x_2 + 6x_3 \\ x_1 + x_2 + 2x_3 \end{bmatrix}$$

によって線形変換 $g: \mathbb{R}^3 \to \mathbb{R}^3$ を定め、 $\mathcal{C}=(g(\boldsymbol{a}_1),g(\boldsymbol{a}_2))$ とするとき、以下の設問に答えよ。

- (14) \mathcal{B} が W の 1 つの基底となるように、p,q の値を定めよ。以下、p,q をこれらの値とする。
- (15) 基底 \mathcal{B} に関する \mathbf{a}_1 , \mathbf{a}_2 の座標 $[\mathbf{a}_1]_{\mathcal{B}}$, $[\mathbf{a}_2]_{\mathcal{B}}$ を求めよ.
- (16) 基底 A から基底 C への基底変換行列を求めよ.
- (17) g(W)=W であるから,g は W の線形変換 $g:W\to W$ とみなせる.このとき, $g:W\to W$ の基底 $\mathcal B$ に関する表現行列を求めよ.

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} 1 & -2 & 2 \ 1 & -2 & 1 \ 1 & -1 & 0 \ \end{bmatrix} \end{aligned}$$
に対して,以下の設問に答えよ.

- (18) M の固有値をすべて求めよ.
- (19) M の最大の固有値に対する固有空間の基底を1つ求めよ.

(20) ベクトル値関数
$$\boldsymbol{x}(t)=\begin{bmatrix}x_1(t)\\x_2(t)\\x_3(t)\end{bmatrix}$$
 に対する斉次線形微分方程式 $\boldsymbol{x}'(t)=M\boldsymbol{x}(t)$ の解 $\boldsymbol{x}(t)$ のうち、初期条件 $\boldsymbol{x}(0)=\begin{bmatrix}1\\2\\3\end{bmatrix}$ をみたす解 $\boldsymbol{x}(t)$ の第 1 成分 $x_1(t)$ を求めよ.