演習第二 (演習第5回)【解答例】

線形:一次独立・一次従属, 基底と次元 (2023年 11月8日実施)

演習問題

従属で、非自明な 1 次関係式の 1 つは $\frac{3}{2}a_1 + \frac{5}{2}a_2 + a_3 = 0$. 分母を払って $3a_1 + 5a_2 + 2b_3 = 0$ と

$$(4) \begin{bmatrix} 0 & 1 & 2 & 9 \\ 1 & 2 & 3 & 7 \\ 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 3 & 7 \\ 0 & 1 & 2 & 9 \\ 0 & -1 & -2 & -9 \\ 0 & -2 & -4 & -18 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -1 & -11 \\ 0 & 1 & 2 & 9 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
より、 $\boldsymbol{a}_1, \boldsymbol{a}_2, \boldsymbol{a}_3, \boldsymbol{a}_4$ は 1 次従属

で, 非自明な1次関係式の1つは $oldsymbol{a}_1-2oldsymbol{a}_2+oldsymbol{a}_3=oldsymbol{0}$. 勿論, $11oldsymbol{a}_1-9oldsymbol{a}_2+oldsymbol{a}_4=oldsymbol{0}$ を挙げてもよい.

で、非目明な 1 次関係式の 1 つは
$$\mathbf{a}_1 - 2\mathbf{a}_2 + \mathbf{a}_3 = \mathbf{0}$$
. 勿論、 $11\mathbf{a}_1 - 9\mathbf{a}_2 + \mathbf{a}_4 = \mathbf{0}$ を挙げ (5)
$$\begin{bmatrix} -1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & -1 & -1 \\ 0 & 0 & 2 & 2 \\ 0 & 2 & 0 & 2 \\ 0 & 2 & 2 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$
$$\rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

(この変形の最後から2番目の行列を見れば、階数が4なので、この段階で1次独立とわかる、)

2 (1)
$$c_1 \boldsymbol{b}_1 + c_2 \boldsymbol{b}_2 + c_3 \boldsymbol{b}_3 = c_1 (\boldsymbol{a}_1 + 2\boldsymbol{a}_2) + c_2 (2\boldsymbol{a}_2 + 3\boldsymbol{a}_3) + c_3 (3\boldsymbol{a}_3 + \boldsymbol{a}_1)$$

$$= (c_1 + c_3)\boldsymbol{a}_1 + 2(c_1 + c_2)\boldsymbol{a}_2 + 3(c_2 + c_3)\boldsymbol{a}_3 = \boldsymbol{0}$$
とする. $\boldsymbol{a}_1, \boldsymbol{a}_2, \boldsymbol{a}_3$ は 1 次独立だから、
$$\begin{cases} c_1 + c_3 = 0 \\ c_1 + c_2 = 0, \end{cases}$$
 すなわち
$$\begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \boldsymbol{0}.$$
 基本変
$$\begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 であるから、 $c_1 = c_2 = c_3 = 0$ となり、 $\boldsymbol{b}_1, \boldsymbol{b}_2, \boldsymbol{b}_3$ は 1 次独立.

(2) (1) と同様に、
$$c_1 \boldsymbol{b}_1 + c_2 \boldsymbol{b}_2 + c_3 \boldsymbol{b}_3 + c_4 \boldsymbol{b}_4 = \boldsymbol{0} \Leftrightarrow \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{bmatrix} = \boldsymbol{0}$$
. 係数行列を基本変 形して、
$$\begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} \rightarrow \cdots \rightarrow \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
. よって、
$$\begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{bmatrix} = t \begin{bmatrix} -1 \\ 1 \\ -1 \\ 1 \end{bmatrix} \quad (t \in \mathbb{R})$$
であるか

ら, b_1 , b_2 , b_3 , b_4 は 1 次従属で, 非自明な 1 次関係式 $b_1 - b_2 + b_3 - b_4 = 0$ が成り立つ.

(3) (1) と同様に、
$$c_1 \mathbf{b}_1 + c_2 \mathbf{b}_2 + c_3 \mathbf{b}_3 = \mathbf{0} \Leftrightarrow \begin{bmatrix} 1 & 0 & \alpha \\ \alpha & 1 & 0 \\ 0 & \alpha & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \mathbf{0}$$
. 係数行列を基本変形して、
$$\begin{bmatrix} 1 & 0 & \alpha \\ \alpha & 1 & 0 \\ 0 & \alpha & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & \alpha \\ 0 & 1 & -\alpha^2 \\ 0 & \alpha & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & \alpha \\ 0 & 1 & -\alpha^2 \\ 0 & 0 & \alpha^3 + 1 \end{bmatrix}$$
. よって、 $\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3$ は $\alpha = -1$ のとき 1次 従属で、非自明な 1次関係式 $\mathbf{b}_1 + \mathbf{b}_2 + \mathbf{b}_3 = \mathbf{0}$ が成り立つ。また、 $\alpha \neq -1$ のときは 1次独立となる.

 $oxed{3}$ \mathbb{R}^3 は 3 次元なので,基底は 3 つのベクトルからなる.よって, \mathcal{B}_1 と \mathcal{B}_6 は基底ではない.また, \mathcal{B}_3 は $oxed{0}$ を含むので明らかに 1 次従属であり,基底でない. $oxed{B}_2$, $oxed{B}_4$, $oxed{B}_5$ に対しては,行列式が 0 かどうかを調べればよい.

$$\begin{vmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{vmatrix} = 2, \quad \begin{vmatrix} 0 & 1 & 2 \\ 1 & 2 & 0 \\ 2 & 0 & 1 \end{vmatrix} = -10, \quad \begin{vmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{vmatrix} = 0$$

であるから \mathbb{R}^3 の基底となっているのは \mathcal{B}_2 , \mathcal{B}_4 である.

- 4 W_1 の元は $\begin{bmatrix} \frac{1}{2}s + \frac{3}{2}t \\ s \\ t \end{bmatrix} = \frac{s}{2} \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} + \frac{t}{2} \begin{bmatrix} 3 \\ 0 \\ 2 \end{bmatrix} (s, t \in \mathbb{R})$ と表せるので、 $W_1 = \left\langle \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 0 \\ 2 \end{bmatrix} \right\rangle$. この 2 つの列ベクトルは明らかに 1 次独立だから、 $\left(\begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 0 \\ 2 \end{bmatrix}\right)$ が W_1 の基底で、 $\dim W_1 = 2$.
 - W_2 の 3 つのベクトルを a_1, a_2, a_3 と書く. $\begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$ より、 a_1, a_2 は 1 次独立で、非自明な 1 次関係式 $a_1 + a_2 + a_3 = \mathbf{0}$ ($\Leftrightarrow a_3 = -a_1 a_2$) が成り立つ. よって、 $W_2 = \langle a_1, a_2, a_3 \rangle = \langle a_1, a_2 \rangle$ となり、 (a_1, a_2) が基底で、 $\dim W_2 = 2$.
 - W_3 については、 $\begin{bmatrix} 1 & 2 & 1 \\ -4 & 4 & 5 \\ 2 & 0 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 1 \\ 0 & 12 & 9 \\ 0 & -4 & -3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & \frac{3}{4} \\ 0 & -4 & -3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -\frac{1}{2} \\ 0 & 1 & \frac{3}{4} \\ 0 & 0 & 0 \end{bmatrix}$ より、 $\dim W_3 = 1 \text{ で}, \left(\begin{bmatrix} 2 \\ -3 \\ 4 \end{bmatrix} \right)$ が基底となる.
 - W_4 については、 $\begin{bmatrix} 1 & 2 & 1 & a \\ -4 & 4 & 5 & b \\ 2 & 0 & -1 & c \end{bmatrix}$ $\rightarrow \begin{bmatrix} 1 & 2 & 1 & a \\ 0 & 12 & 9 & 4a+b \\ 0 & -4 & -3 & -2a+c \end{bmatrix}$ $\rightarrow \begin{bmatrix} 1 & 2 & 1 & a \\ 0 & 1 & \frac{3}{4} & \frac{1}{12}(4a+b) \\ 0 & 1 & \frac{3}{4} & \frac{1}{12}(4a+b) \\ 0 & 0 & 0 & \frac{1}{3}(-2a+b+3c) \end{bmatrix}$ より、 $W_4 = \left\{ \begin{bmatrix} a \\ b \\ c \end{bmatrix} \in \mathbb{R}^3 \middle| -2a+b+3c = 0 \right\}$ となるので、 W_1 と同様に、 $\dim W_4 = 2$ で、 $\left(\begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$ 、 $\left(\begin{bmatrix} 3 \\ 0 \\ 2 \end{bmatrix} \right)$ が基底.

【注意】一般に、 $m \times n$ 行列 $A = [\mathbf{a}_1 \cdots \mathbf{a}_n]$ に対し、 $\{\mathbf{b} \in \mathbb{R}^m \mid A\mathbf{x} = \mathbf{b} \text{ が解を持つ}\} \subset \mathbb{R}^m$ は、第 7 回で見る A の列空間 $C(A) = \langle \mathbf{a}_1, \dots, \mathbf{a}_n \rangle$ に一致することが示せる。 W_4 に対しては $A = \begin{bmatrix} 1 & 2 & 1 \\ -4 & 4 & 5 \\ 2 & 0 & -1 \end{bmatrix}$ となっており、これは W_3 で扱った行列と同じである。 W_3 でみた簡約化の計算から、A の第 1 列と第 2 列のベクトルが C(A) の基底となることがわかるので、 $\dim W_4 = 2$ と基底 $\begin{pmatrix} \begin{bmatrix} 1 \\ -4 \\ 2 \end{pmatrix}, \begin{bmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$ が得られる。

$$\begin{bmatrix}
5 \end{bmatrix} (1) \begin{bmatrix}
1 & 4 & 5 & 3 \\
-2 & -1 & 4 & 1 \\
1 & 3 & 3 & 2 \\
4 & 2 & -8 & 0
\end{bmatrix}
\rightarrow
\begin{bmatrix}
1 & 4 & 5 & 3 \\
0 & 7 & 14 & 7 \\
0 & -1 & -2 & -1 \\
0 & -14 & -28 & -12
\end{bmatrix}
\rightarrow
\begin{bmatrix}
1 & 4 & 5 & 3 \\
0 & 1 & 2 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 2
\end{bmatrix}
\rightarrow
\begin{bmatrix}
1 & 0 & -3 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

より、 a_1, a_2, a_3 は 1 次従属で、非自明な 1 次関係式 $3a_1 - 2a_2 + a_3 = 0$ が成り立つことがわかる.

- (2) (1) から、 \mathscr{A}_1 は基底にならない. 他方、非自明な 1 次関係式を使うと、 $c_1 \mathbf{a}_1 + c_2 \mathbf{a}_2 + c_3 \mathbf{a}_3 + c_4 \mathbf{a}_4 =$ $(c_1-3c_3)a_1+(c_2+2c_3)a_2+c_4a_4$ と書き直せるので、 $\mathscr{A}_2=(a_1,a_2,a_4)$ はW を生成する. 同様 に考えて、 \mathscr{A}_3 、 \mathscr{A}_4 はいずれも W を生成することがわかる. a_1, a_2, a_3 のどの 2 つ a_i, a_i をとって も a_i, a_j, a_4 は1次独立であることがチェックできるので、 $\mathscr{A}_2, \mathscr{A}_3, \mathscr{A}_4$ はいずれも W の基底.
- (3) 基底の定義に従って次の 3 つの項目をチェックする: (i) b_1, b_2, b_3 が 1 次独立. (ii) b_1, b_2, b_3 が W に属する. (iii) b_1, b_2, b_3 が W を生成する.

(i)
$$\begin{bmatrix} \boldsymbol{b}_1 & \boldsymbol{b}_2 & \boldsymbol{b}_3 \end{bmatrix} = \begin{bmatrix} 4 & 2 & 9 \\ -1 & 3 & -4 \\ 3 & 1 & 7 \\ 3 & -4 & 10 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 14 & -7 \\ -1 & 3 & -4 \\ 0 & 10 & -5 \\ 0 & 5 & -2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -3 & 4 \\ 0 & 2 & -1 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 4 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

より、 $\operatorname{rank}\left[\boldsymbol{b}_1 \ \boldsymbol{b}_2 \ \boldsymbol{b}_3\right] = 3$ であるから成立

(ii)
$$\begin{bmatrix} \mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_4 \ | \ \mathbf{b}_1 \ \mathbf{b}_2 \ \mathbf{b}_3 \end{bmatrix} = \begin{bmatrix} 1 & 4 & 3 & 4 & 2 & 9 \\ -2 & -1 & 1 & -1 & 3 & -4 \\ 1 & 3 & 2 & 3 & 1 & 7 \\ 4 & 2 & 0 & 3 & -4 & 10 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 4 & 3 & 4 & 2 & 9 \\ 0 & 7 & 7 & 7 & 7 & 14 \\ 0 & -1 & -1 & -1 & -1 & -2 \\ 0 & -14 & -12 & -13 & -12 & -26 \end{bmatrix}$$
$$\rightarrow \begin{bmatrix} 1 & 0 & -1 & 0 & -2 & 1 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 0 & 2 & 1 & 2 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & \frac{1}{2} & -1 & 2 \\ 0 & 1 & 0 & \frac{1}{2} & 0 & 1 \\ 0 & 0 & 1 & \frac{1}{2} & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

より、 $m{b}_1=rac{1}{2}(m{a}_1+m{a}_2+m{a}_4), \ m{b}_2=-m{a}_1+m{a}_4, \ m{b}_3=2m{a}_1+m{a}_2+m{a}_4$ とそれぞれ表せること からわかる.

(iii) 逆に a_1, a_2, a_4 が b_1, b_2, b_3 の 1 次結合で表せることを示せばよい. これは

$$\begin{bmatrix} 4 & 2 & 9 & 1 & 4 & 3 \\ -1 & 3 & -4 & -2 & -1 & 1 \\ 3 & 1 & 7 & 1 & 3 & 2 \\ 3 & -4 & 10 & 4 & 2 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -3 & 4 & 2 & 1 & -1 \\ 0 & 14 & -7 & -7 & 0 & 7 \\ 0 & 10 & -5 & -5 & 0 & 5 \\ 0 & 5 & -2 & -2 & -1 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -3 & 4 & 2 & 1 & -1 \\ 0 & 2 & -1 & -1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & -1 & 1 \end{bmatrix}$$
$$\rightarrow \begin{bmatrix} 1 & 0 & 4 & 2 & -2 & 2 \\ 0 & 1 & 0 & 0 & -1 & 1 \\ 0 & 0 & -1 & -1 & 2 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & -2 & 6 & -2 \\ 0 & 1 & 0 & 0 & -1 & 1 \\ 0 & 0 & 1 & 1 & -2 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

より, $a_1 = -2b_1 + b_3$, $a_2 = 6b_1 - b_2 - 2b_3$, $a_4 = -2b_1 + b_2 + b_3$ と表せることからわかる.

【注意】 (i) は $U = \langle \boldsymbol{b}_1, \boldsymbol{b}_2, \boldsymbol{b}_3 \rangle$ が 3 次元で $(\boldsymbol{b}_1, \boldsymbol{b}_2, \boldsymbol{b}_3)$ がその基底であることを意味する. (ii) は $U \subset W$, (iii) は $U \supset W$ を意味する. (2) で dim W = 3 であることがわかっているので, **教科書 命** 題 18.6 に注意すれば、(ii)、(iii) のどちらか一方が言えれば、(i) と合わせて、U=W であることが 言え, b_1 , b_2 , b_3 が W の基底とわかる.

レポート問題

- $egin{aligned} egin{aligned} e$
 - (2) a_1, a_2 は明らかに 1 次独立であるから、 $\langle a_1, a_2, a_3 \rangle$ の次元は、k = -2 のとき 2 (基底は (a_1, a_2))、 $k \neq -2$ のとき 3 (基底は (a_1, a_2, a_3) あるいは $(\underbrace{e_1, e_2, e_3})$).
- 2 行基本変形により、 $[m{b}_1 \ m{b}_2 \ m{b}_3] = \begin{bmatrix} 1 & -1 & -5 \\ 1 & 1 & 1 \\ -1 & 2 & 8 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & -5 \\ 0 & 2 & 6 \\ 0 & 1 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{bmatrix}$. これより、 $m{b}_3 = -2m{b}_1 + 3m{b}_2$ であり、 $m{b}_1$ 、 $m{b}_2$ は明らかに 1 次独立であるから、 $V = \langle m{b}_1, m{b}_2, m{b}_3 \rangle$ の基底は $(m{b}_1, m{b}_2)$ であり、次元は $\dim V = 2$.
- ③ 行基本変形により, $\begin{bmatrix} -2 & 1 & 1 & -1 \\ 1 & 1 & -1 & 2 \\ 1 & -2 & 0 & -1 \end{bmatrix}$ \rightarrow $\begin{bmatrix} 1 & 1 & -1 & 2 \\ 0 & 3 & -1 & 3 \\ 0 & -3 & 1 & -3 \end{bmatrix}$ \rightarrow $\begin{bmatrix} 1 & 0 & -\frac{2}{3} & 1 \\ 0 & 1 & -\frac{1}{3} & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$. これより,W の 元は $\begin{bmatrix} \frac{2}{3}s t \\ \frac{1}{3}s t \\ s \\ t \end{bmatrix}$ $= \frac{s}{3}\begin{bmatrix} 2 \\ 1 \\ 3 \\ 0 \end{bmatrix} + t\begin{bmatrix} -1 \\ -1 \\ 0 \\ 1 \end{bmatrix}$ $(s,t \in \mathbb{R})$ と表せるので,W の 1 組の基底は $\begin{bmatrix} 2 \\ 1 \\ 3 \\ 0 \end{bmatrix}$, $\begin{bmatrix} -1 \\ -1 \\ 0 \\ 1 \end{bmatrix}$ で,次元は $\dim W = 2$.