数学演習第二 (演習第5回)【解答例】

線形:一次独立・一次従属, 基底と次元 (2024 年 11 月 6 日実施)

演習問題

属で、非自明な1次関係式の1つは $\frac{3}{2}a_1+\frac{5}{2}a_2+a_3=0$. 分母を払って $3a_1+5a_2+2a_3=0$ と

- $\begin{pmatrix}
 3 & \begin{bmatrix}
 -1 & 3 & -2 & -2 \\
 1 & -1 & -3 & 1 \\
 1 & -1 & 3 & 1 \\
 -1 & 3 & 2 & -2
 \end{bmatrix}
 \rightarrow
 \begin{bmatrix}
 1 & -3 & 2 & 2 \\
 0 & 2 & -5 & -1 \\
 0 & 2 & 1 & -1 \\
 0 & 0 & 4 & 0
 \end{bmatrix}
 \rightarrow
 \begin{bmatrix}
 1 & -3 & 2 & 2 \\
 0 & 2 & 1 & -1 \\
 0 & 0 & -6 & 0 \\
 0 & 0 & 1 & 0
 \end{bmatrix}
 \rightarrow
 \begin{bmatrix}
 1 & 0 & 0 & \frac{1}{2} \\
 0 & 1 & 0 & -\frac{1}{2} \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 0
 \end{bmatrix}
 \downarrow b,$ $a_1 - a_2 - 2a_4 = 0$
- (5) $\begin{bmatrix} -1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & -1 & -1 \\ 0 & 0 & 2 & 2 \\ 0 & 2 & 0 & 2 \\ 0 & 2 & 2 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$ $\rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

(この変形の最後から2番目の行列を見れば、階数が4なので、この段階で1次独立とわかる.)

 $2 \mid (1) c_1 \mathbf{b}_1 + c_2 \mathbf{b}_2 + c_3 \mathbf{b}_3 = c_1(-\mathbf{a}_1 + 8\mathbf{a}_2 + 2\mathbf{a}_3) + c_2(3\mathbf{a}_1 - 2\mathbf{a}_2 - 8\mathbf{a}_3) + c_3(-6\mathbf{a}_1 - 7\mathbf{a}_2 + 17\mathbf{a}_3)$ = $(-c_1 + 3c_2 - 6c_3)a_1 + (8c_1 - 2c_2 - 7c_3)a_2 + (2c_1 - 8c_2 + 17c_3)a_3 = 0$ とする. a_1, a_2, a_3 は 1 次独立だから、 $\begin{cases} -c_1 + 3c_2 - 6c_3 = 0 \\ 8c_1 - 2c_2 - 7c_3 = 0 \end{cases}$ をする. すなわち、連立一次方程式 $\begin{cases} -1 & 3 & -6 \\ 8 & -2 & -7 \\ 2 & -8 & 17 \end{cases} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \mathbf{0}$ を得るが、 $\boxed{1}$ (1) より、係数行列を簡約化すると $\begin{bmatrix} 1 & 0 & -\frac{3}{2} \\ 0 & 1 & -\frac{5}{2} \\ 0 & 0 & 0 \end{bmatrix}$ となる

ので、解は $\begin{bmatrix}c_1\\c_2\\c_3\end{bmatrix}=t\begin{bmatrix}3\\5\\2\end{bmatrix}$ $(t\in\mathbb{R})$ となる.よって、 $m{b}_1,m{b}_2,m{b}_3$ は1次従属で、非自明な1次関係式

- (2) (1) と同様に、 $c_1 \boldsymbol{b}_1 + c_2 \boldsymbol{b}_2 + c_3 \boldsymbol{b}_3 + c_4 \boldsymbol{b}_4 = \boldsymbol{0} \Leftrightarrow \begin{bmatrix} -1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{bmatrix} = \boldsymbol{0}.$ [1) (5) より係数 行列を簡約化すると単位行列になるので、 $c_1=c_2=c_3=c_4=0$ となり、 $\vec{b_1},\vec{b_2},\vec{b_3},\vec{b_4}$ は1次独立.
- (3) (1) と同様に, $c_1 \boldsymbol{b}_1 + c_2 \boldsymbol{b}_2 + c_3 \boldsymbol{b}_3 = \boldsymbol{0} \Leftrightarrow \begin{bmatrix} 1 & 0 & \alpha \\ \alpha & 1 & 0 \\ 0 & \alpha & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \boldsymbol{0}$. 係数行列を基本変形して, $\begin{bmatrix} 1 & 0 & \alpha \\ \alpha & 1 & 0 \\ 0 & \alpha & 1 \end{bmatrix} \to \begin{bmatrix} 1 & 0 & \alpha \\ 0 & 1 & -\alpha^2 \\ 0 & \alpha & 1 \end{bmatrix} \to \begin{bmatrix} 1 & 0 & \alpha \\ 0 & 1 & -\alpha^2 \\ 0 & 0 & \alpha^3 + 1 \end{bmatrix}$. よって, $\boldsymbol{b}_1, \boldsymbol{b}_2, \boldsymbol{b}_3$ は $\alpha = -1$ のとき 1 次 従属で 非白田た 1 次間はより

従属で、非自明な1次関係式 $b_1 + b_2 + b_3 = 0$ が成り立つ. また、 $\alpha \neq -1$ のときは1次独立となる.

 $oxed{3}$ \mathbb{R}^3 は 3 次元なので,基底は 3 つのベクトルからなる.よって, \mathcal{B}_1 と \mathcal{B}_6 は基底ではない.また, \mathcal{B}_3 は $oxed{0}$ を含むので明らかに 1 次従属であり,基底でない. $oxed{B}_2$, $oxed{B}_4$, $oxed{B}_5$ に対しては,行列式が 0 かどうかを調べればよい.

$$\begin{vmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{vmatrix} = 2, \quad \begin{vmatrix} 0 & 1 & 2 \\ 1 & 2 & 0 \\ 2 & 0 & 1 \end{vmatrix} = -9, \quad \begin{vmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{vmatrix} = 0$$

であるから, \mathbb{R}^3 の基底となっているのは \mathcal{B}_2 , \mathcal{B}_4 である.

- $egin{aligned} lackbox{lackbox{4}} & lackbox{lackbox{W}}_1$ の元は $egin{bmatrix} 2s+3t \ s \ t \end{bmatrix} = s \begin{bmatrix} 2 \ 1 \ 0 \end{bmatrix} + t \begin{bmatrix} 3 \ 0 \ 1 \end{bmatrix} \ (s,t\in\mathbb{R})$ と表せるので、 $W_1 = \left\langle \begin{bmatrix} 2 \ 1 \ 0 \end{bmatrix}, \begin{bmatrix} 3 \ 0 \ 1 \end{bmatrix} \right\rangle$. この 2 つの列ベクトルは明らかに 1 次独立だから、 $\left(\begin{bmatrix} 2 \ 1 \ 0 \end{bmatrix}, \begin{bmatrix} 3 \ 0 \ 1 \end{bmatrix} \right)$ が W_1 の基底で、 $\dim W_1 = 2$.
 - W_2 の 3 つのベクトルを a_1, a_2, a_3 と書く. $\begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$ より、 a_1, a_2 は 1 次独立で、非自明な 1 次関係式 $a_1 + a_2 + a_3 = \mathbf{0}$ ($\Leftrightarrow a_3 = -a_1 a_2$) が成り立つ. よって、 $W_2 = \langle a_1, a_2, a_3 \rangle = \langle a_1, a_2 \rangle$ となり、 (a_1, a_2) が基底で、 $\dim W_2 = 2$.
 - W_3 については、 $\begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & 4 \\ 1 & 8 & -3 \end{bmatrix}$ \rightarrow $\begin{bmatrix} 1 & 2 & 1 \\ 0 & -3 & 2 \\ 0 & 6 & -4 \end{bmatrix}$ \rightarrow $\begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & -\frac{2}{3} \\ 0 & 0 & 0 \end{bmatrix}$ \rightarrow $\begin{bmatrix} 1 & 0 & \frac{7}{3} \\ 0 & 1 & -\frac{2}{3} \\ 0 & 0 & 0 \end{bmatrix}$ より、 $\dim W_3 = 1$ で、 $\begin{pmatrix} \begin{bmatrix} -7 \\ 2 \\ 3 \end{bmatrix} \end{pmatrix}$ が基底となる.
 - W_4 については、 $\begin{bmatrix} 1 & 2 & 1 & a \\ 2 & 1 & 4 & b \\ 1 & 8 & -3 & c \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 1 & a \\ 0 & -3 & 2 & -2a + b \\ 0 & 6 & -4 & -a + c \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 1 & a \\ 0 & -3 & 2 & -2a + b \\ 0 & 0 & 0 & -5a + 2b + c \end{bmatrix}$ より、 $W_4 = \left\{ \begin{bmatrix} a \\ b \\ c \end{bmatrix} \in \mathbb{R}^3 \middle| -5a + 2b + c = 0 \right\}$ となるので、 $W_1 \ \text{と同様に dim } W_4 = 2 \ \text{で},$ $\left(\begin{bmatrix} 2 \\ 5 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 5 \end{bmatrix} \right)$ が基底.

【注意】一般に、 $m \times n$ 行列 $A = [a_1 \cdots a_n]$ に対し、 $\{ \boldsymbol{b} \in \mathbb{R}^m \mid A\boldsymbol{x} = \boldsymbol{b} \text{ が解を持つ} \} \subset \mathbb{R}^m$ は、第 7 回で見る A の列空間 $C(A) = \langle \boldsymbol{a}_1, \dots, \boldsymbol{a}_n \rangle$ に一致することが示せる。 W_4 に対しては $A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & 4 \\ 1 & 8 & -3 \end{bmatrix}$ となっており、これは W_3 で扱った行列と同じである。 W_3 でみた簡約化の計算 から、A の第 1 列と第 2 列のベクトルが C(A) の基底となることがわかるので、 $\dim W_4 = 2$ と基底 $\begin{pmatrix} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 8 \end{pmatrix} \end{pmatrix}$ が得られる。

$$\begin{bmatrix}
5 \\
1
\end{bmatrix}
\begin{pmatrix}
1 \\
4 \\
5 \\
3 \\
-2 \\
-1 \\
4 \\
2 \\
-8 \\
0
\end{bmatrix}
\rightarrow
\begin{pmatrix}
1 \\
4 \\
5 \\
0 \\
7 \\
14 \\
7 \\
0 \\
-14 \\
-28 \\
-12
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 \\
4 \\
5 \\
3 \\
0 \\
1 \\
2 \\
1 \\
0 \\
0 \\
0 \\
0
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 \\
4 \\
5 \\
3 \\
0 \\
1 \\
2 \\
1 \\
0 \\
0 \\
0 \\
0
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 \\
0 \\
-3 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{pmatrix}$$

より、 a_1, a_2, a_3 は 1 次従属で、非自明な 1 次関係式 $3a_1 - 2a_2 + a_3 = 0$ が成り立つことがわかる.

- (2) (1) から、 \mathscr{A}_1 は基底にならない. 他方、非自明な 1 次関係式を使うと、 $c_1 \mathbf{a}_1 + c_2 \mathbf{a}_2 + c_3 \mathbf{a}_3 + c_4 \mathbf{a}_4 =$ $(c_1-3c_3)a_1+(c_2+2c_3)a_2+c_4a_4$ と書き直せるので、 $\mathscr{A}_2=(a_1,a_2,a_4)$ は W を生成する. 同様 に考えて、 \mathscr{A}_3 、 \mathscr{A}_4 はいずれも W を生成することがわかる. a_1, a_2, a_3 のどの 2 つ a_i, a_j をとって も a_i, a_j, a_4 は1次独立であることがチェックできるので、 $\mathscr{A}_2, \mathscr{A}_3, \mathscr{A}_4$ はいずれも W の基底.
- (3) 基底の定義に従って次の 3 つの項目をチェックする: (i) b_1, b_2, b_3 が 1 次独立. (ii) b_1, b_2, b_3 が W に属する. (iii) b_1, b_2, b_3 が W を生成する.

$$(i) \quad [\boldsymbol{b}_1 \ \boldsymbol{b}_2 \ \boldsymbol{b}_3] = \begin{bmatrix} 4 & 2 & 9 \\ -1 & 3 & -4 \\ 3 & 1 & 7 \\ 3 & -4 & 10 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 14 & -7 \\ -1 & 3 & -4 \\ 0 & 10 & -5 \\ 0 & 5 & -2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -3 & 4 \\ 0 & 2 & -1 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 4 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

より, rank $[\boldsymbol{b}_1 \ \boldsymbol{b}_2 \ \boldsymbol{b}_3] = 3$ であるから成立.

(ii)
$$[\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_4 \ | \ \mathbf{b}_1 \ \mathbf{b}_2 \ \mathbf{b}_3] = \begin{bmatrix} 1 & 4 & 3 & 4 & 2 & 9 \\ -2 & -1 & 1 & -1 & 3 & -4 \\ 1 & 3 & 2 & 3 & 1 & 7 \\ 4 & 2 & 0 & 3 & -4 & 10 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 4 & 3 & 4 & 2 & 9 \\ 0 & 7 & 7 & 7 & 7 & 14 \\ 0 & -1 & -1 & -1 & -1 & -2 \\ 0 & -14 & -12 & -13 & -12 & -26 \end{bmatrix}$$
$$\rightarrow \begin{bmatrix} 1 & 0 & -1 & 0 & -2 & 1 \\ 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 0 & 2 & 1 & 2 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & \frac{1}{2} & -1 & 2 \\ 0 & 1 & 0 & \frac{1}{2} & 0 & 1 \\ 0 & 0 & 1 & \frac{1}{2} & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

より、 $m{b}_1=rac{1}{2}(m{a}_1+m{a}_2+m{a}_4), \ m{b}_2=-m{a}_1+m{a}_4, \ m{b}_3=2m{a}_1+m{a}_2+m{a}_4$ とそれぞれ表せること からわかる.

(iii) 逆に a_1, a_2, a_4 が b_1, b_2, b_3 の 1 次結合で表せることを示せばよい. これは

$$\begin{bmatrix} 4 & 2 & 9 & 1 & 4 & 3 \\ -1 & 3 & -4 & -2 & -1 & 1 \\ 3 & 1 & 7 & 1 & 3 & 2 \\ 3 & -4 & 10 & 4 & 2 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -3 & 4 & 2 & 1 & -1 \\ 0 & 14 & -7 & -7 & 0 & 7 \\ 0 & 10 & -5 & -5 & 0 & 5 \\ 0 & 5 & -2 & -2 & -1 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -3 & 4 & 2 & 1 & -1 \\ 0 & 2 & -1 & -1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & -1 & 1 \end{bmatrix}$$
$$\rightarrow \begin{bmatrix} 1 & 0 & 4 & 2 & -2 & 2 \\ 0 & 1 & 0 & 0 & -1 & 1 \\ 0 & 0 & -1 & -1 & 2 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & -2 & 6 & -2 \\ 0 & 1 & 0 & 0 & -1 & 1 \\ 0 & 0 & 1 & 1 & -2 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

より, $a_1 = -2b_1 + b_3$, $a_2 = 6b_1 - b_2 - 2b_3$, $a_4 = -2b_1 + b_2 + b_3$ と表せることからわかる.

【注意】 (i) は $U = \langle \boldsymbol{b}_1, \boldsymbol{b}_2, \boldsymbol{b}_3 \rangle$ が 3 次元で $(\boldsymbol{b}_1, \boldsymbol{b}_2, \boldsymbol{b}_3)$ がその基底であることを意味する. (ii) は $U \subset W$, (iii) は $U \supset W$ を意味する. (2) で dim W = 3 であることがわかっているので, 教科書 命 題 18.6 に注意すれば、(ii)、(iii) のどちらか一方が言えれば、(i) と合わせて、U=W であることが 言え, $\boldsymbol{b}_1, \boldsymbol{b}_2, \boldsymbol{b}_3$ が W の基底とわかる.

レポート問題

- $egin{aligned} egin{aligned} e$
 - (2) a_1, a_2 は明らかに 1 次独立であるから、 $\langle a_1, a_2, a_3 \rangle$ の次元は、k = -6 のとき 2 (基底は (a_1, a_2))、 $k \neq -6$ のとき 3 (基底は (a_1, a_2, a_3) あるいは (e_1, e_2, e_3)).
- 2 行基本変形により、 $[m{b}_1 \ m{b}_2 \ m{b}_3] = \begin{bmatrix} 1 & -1 & -4 \\ 2 & 1 & 1 \\ -3 & 2 & 9 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & -4 \\ 0 & 3 & 9 \\ 0 & -1 & -3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{bmatrix}$. これより、 $m{b}_3 = -m{b}_1 + 3m{b}_2$ であり、 $m{b}_1, m{b}_2$ は明らかに1次独立であるから、 $V = \langle m{b}_1, m{b}_2, m{b}_3 \rangle$ の基底は $(m{b}_1, m{b}_2)$ であり、次元は $\dim V = 2$.
- | 3 | 行基本変形により、 $\begin{bmatrix} 5 & 3 & -1 & 9 \\ 2 & 1 & 0 & 4 \end{bmatrix}$ \rightarrow $\begin{bmatrix} 1 & 1 & -1 & 1 \\ 2 & 1 & 0 & 4 \end{bmatrix}$ \rightarrow $\begin{bmatrix} 1 & 1 & -1 & 1 \\ 0 & -1 & 2 & 2 \end{bmatrix}$ \rightarrow $\begin{bmatrix} 1 & 0 & 1 & 3 \\ 0 & 1 & -2 & -2 \end{bmatrix}$. これより、W の元は $\begin{bmatrix} -s 3t \\ 2s + 2t \\ s \\ t \end{bmatrix}$ $= s \begin{bmatrix} -1 \\ 2 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} -3 \\ 2 \\ 0 \\ 1 \end{bmatrix}$ $(s,t \in \mathbb{R})$ と表せるので、W の 1 組の基底は $\begin{bmatrix} -1 \\ 2 \\ 1 \\ 0 \end{bmatrix}$ 、 $\begin{bmatrix} -3 \\ 2 \\ 0 \\ 1 \end{bmatrix}$ で、次元は $\dim W = 2$.