数学演習第一・中間統一試験【問題用紙】

2025 年 6 月 11 日実施 · 試験時間 90 分

― 解答用紙には答えのみを整理された形で記入せよ ―

- **1** 逆三角関数について, 次の問いに答えよ.
 - (1) $\sin^{-1}\left(\sin\frac{6\pi}{5}\right)$ の値を求めよ.
 - (2) 方程式 $Cos^{-1} x + 2 Tan^{-1} 2 = \pi$ を解け.
 - (3) $y = \operatorname{Tan}^{-1} \frac{1}{x} (x > 0)$ のグラフの概形を解答欄に図示せよ (グラフの凹凸がわかるようにかくこと). ただし, 値域が読み取れるように座標軸に必要な数値を書き入れよ.
- 2 次の極限値を求めよ.

(4)
$$\lim_{x \to 0} \frac{x^3}{x - \sin^{-1} x}$$

(5)
$$\lim_{x \to 0} \frac{1}{x2^x} \log \sqrt[3]{\frac{e+x}{e-x}}$$

(6)
$$\lim_{x \to \infty} \left(\frac{2}{\pi} \cos^{-1} \frac{1}{x} \right)^x$$

- 3 関数の導関数、微分係数について、次の問いに答えよ.
 - (7) 関数 $f(x) = x^{\operatorname{Tan}^{-1} x}$ (x > 0) の導関数 f'(x) を求めよ.
 - (8) 関数 $y = (x^2 1)^2$ (0 < x < 1) の逆関数 $x = \varphi(y)$ に対して, $\varphi'\left(\frac{1}{16}\right)$ を求めよ.
 - (9) 関数 $y = \frac{1}{\sqrt{\sinh x}} (x > 0)$ の逆関数 $x = \psi(y)$ に対して、 $\psi'(1)$ を求めよ. ただし、 $\sinh x = \frac{e^x e^{-x}}{2}$ とする.
- **4** (10) 関数 $f(x) = x^{\frac{1}{3}}(|x|-1)^{\frac{2}{3}}$ の極小値をすべて求めよ. ただし、「x=a で極小値 b 」という形で答えよ.

- **5** 空間内の 3点 A(3, 2, 1), B(1, 1, 2), C(4, 1, 0) について, 次の問いに答えよ.
 - (11) 3 点 A, B, C を通る平面 α の方程式を求めよ.
 - (12) 原点 O から平面 α に下ろした垂線の長さを求めよ.
- **6** 行列 $A = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix}$ および $M = \begin{bmatrix} A & B \end{bmatrix}$ について, 次の問いに答えよ.
 - (13) ^{t}MM の第 3 行の行べクトルを求めよ.
 - (14) AXB = BA を満たす行列 X を求めよ.
- $egin{aligned} egin{aligned} e$
- 8 (16) 行列 $\begin{bmatrix} 1 & 2a+5 & -1 \\ 2 & a+4 & a^2-6 \\ 1 & 3a+7 & -1 \end{bmatrix}$ の階数が 2 となる a の値を求めよ.
- 9 連立 1 次方程式に関する以下の問いに答えよ. ただし, (18), (20) において解が任意定数を含む場合は, 任意定数の選び方は標準的な方法, すなわち線形代数の教科書に書かれている方法 (= 演習の解答例の方法) に従え. また, 任意定数の文字は s, t, ... をこの順に用いよ.
 - (17) 連立 1 次方程式 $\begin{cases} 2x_1 + x_2 x_3 + x_4 = 3\\ -x_1 + 2x_2 + 3x_3 x_4 = -5\\ x_1 + x_2 + 3x_4 = 6\\ x_1 + 2x_2 + x_3 + 2x_4 = 3 \end{cases}$ の拡大係数行列の階数を求めよ.
 - (18) (17) の連立1次方程式を解け.
 - (19) 連立 1 次方程式 $\begin{cases} x_1 + 2x_2 + x_3 = 5 \\ -2x_1 + 3x_2 + kx_3 = -3 \end{cases}$ が無数の解をもつような定数 k の条件 $x_1 + kx_2 + x_3 = 1$ を求めよ.
 - (20) k が (19) で求めた条件を満たすとき、(19) の連立 1 次方程式を解け.